Exercise 3.1

Problem

Prove Proposition 3.6.

PROPOSITION 3.6 Let negl1negl_1 and negl2negl_2 be negligible functions. Then,

  1. The function negl3negl_3 defined by negl3(n)=negl1(n)+negl2(n)negl_3(n) = negl_1(n)+negl_2(n) is negligible.

  2. For any positive polynomial pp, the function negl4negl_4 defined by negl4(n)=p(n)negl1(n)negl_4(n) = p(n) · negl_1(n) is negligible.

Solution

Part 1

Since negl1negl_1 is a negligible function, for any positive polynomial pp, there exists an N1N_1 such that

n>N1,negl1(n)<1p(n)\forall n > N_1, negl_1(n) < \frac{1}{p(n)}

Similarly, there exists an N2N_2 such that

n>N2,negl2(n)<1p(n)\forall n > N_2, negl_2(n) < \frac{1}{p(n)}

Thus for any positive polynomial pp, there exists N>max(N1,N2)N > \max(N_1, N_2) such that

n>N,negl1(n)<12p(n),negl2(n)<12p(n)\forall n > N, negl_1(n) < \frac{1}{2p(n)}, negl_2(n) < \frac{1}{2p(n)}

Hence,

n>N,negl3(n)=negl1(n)+negl2(n)<22p(n)=1p(n)\forall n>N, negl_3(n) = negl_1(n)+negl_2(n) < \frac{2}{2p(n)} = \frac{1}{p(n)}

Therefore negl3negl_3 is also negligible.

Part 2

Assuming that negl4negl_4 is not negligible. That is, exists a integer c>0c > 0 such that

n>0,negl4(n)=p(n)negl1(n)1ncnegl1(n)1p(n)nc\forall n > 0, negl_4(n) = p(n)\cdot negl_1(n) \geq \frac{1}{n^c} \Rightarrow negl_1(n) \geq \frac{1}{p(n)\cdot n^c}

Since pp is a polynomial, p(n)=p(n)ncp'(n) = p(n)\cdot n^c is also polynomial. That is there exists a positive polynomial p(n)p'(n) such that

n>0,negl1(n)1p(n)\forall n > 0, negl_1(n) \geq \frac{1}{p'(n)}

Which is converse to negl1negl_1 is negligible.

Therefore negl4negl_4 is negligible.

Last updated

Was this helpful?